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Abstract. In the first of these two lectures I
shall talk generally about experimental math-
ematics. In Part II, I shall present some more
detailed and sophisticated examples.

The emergence of powerful mathematical com-
puting environments, the growing availability
of correspondingly powerful (multi-processor)
computers and the pervasive presence of the
internet allow for research mathematicians, stu-
dents and teachers, to proceed heuristically
and ‘quasi-inductively’. We may increasingly
use symbolic and numeric computation visual-
ization tools, simulation and data mining.

Many of the benefits of computation are acces-
sible through low-end ‘electronic blackboard’
versions of experimental mathematics [1, 8].
This also permits livelier classes, more realis-
tic examples, and more collaborative learning.
Moreover, the distinction between computing
(HPC) and communicating (HPN) is increas-
ingly moot.
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The unique features of our discipline make

this both more problematic and more chal-

lenging. For example, there is still no truly
satisfactory way of displaying mathematical no-
tation on the web; and we care more about the
reliability of our literature than does any other
science. The traditional role of proof in

mathematics is arguably under siege.

Limned by examples, I intend to pose questions
([9]) such as:

• What constitutes secure mathematical knowl-
edge?

• When is computation convincing? Are hu-
mans less fallible?

• What tools are available? What method-
ologies?
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• What about the ‘law of the small num-

bers’?

• How is mathematics actually done? How

should it be?

• Who cares for certainty? What is the role

of proof?

And I shall offer some personal conclusions.
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Many of the more sophisticated examples orig-

inate in the boundary between mathematical

physics and number theory and involve the ζ-

function, ζ(n) =
∑∞

k=1
1
kn, and its friends [2,

3].

They often rely on the sophisticated use of In-

teger Relations Algorithms — recently ranked

among the ‘top ten’ algorithms of the century

[7, 8]. (See [4, 5] and

www.cecm.sfu.ca/projects/IntegerRelations/.)

• As time permits, I shall also describe West-

Grid, the new Western Canadian computer

grid (www.westgrid.ca), and my own ad-

vanced collaboration facility, CoLab

(www.colab.sfu.ca).
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SIMON and RUSSELL

“This skyhook-skyscraper construction

of science from the roof down to the

yet unconstructed foundations was pos-

sible because the behaviour of the sys-

tem at each level depended only on a

very approximate, simplified, abstracted

characterization at the level beneath.13

This is lucky, else the safety of bridges

and airplanes might depend on the cor-

rectness of the “Eightfold Way” of look-

ing at elementary particles.”

¦ Herbert A. Simon, The Sciences of the Arti-

ficial, MIT Press, 1996, page 16.
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13“... More than fifty years ago Bertrand
Russell made the same point about the
architecture of mathematics. See the
“Preface” to Principia Mathematica “...
the chief reason in favour of any the-
ory on the principles of mathematics
must always be inductive, i.e., it must
lie in the fact that the theory in ques-
tion allows us to deduce ordinary math-
ematics. In mathematics, the great-
est degree of self-evidence is usually
not to be found quite at the begin-
ning, but at some later point; hence
the early deductions, until they reach
this point, give reason rather for believ-
ing the premises because true conse-
quences follow from them, than for be-
lieving the consequences because they
follow from the premises.” Contempo-
rary preferences for deductive formalisms
frequently blind us to this important
fact, which is no less true today than
it was in 1910.”
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GAUSS and HADAMARD

Gauss once confessed,

“I have the result, but I do not yet know how

to get it.”

¦ Issac Asimov and J. A. Shulman, ed., Isaac

Asimov’s Book of Science and Nature Quo-

tations, Weidenfield and Nicolson, New York,

1988, pg. 115.

· · ·

“The object of mathematical rigor is to sanc-

tion and legitimize the conquests of intuition,

and there was never any other object for it.”

¦ J. Hadamard quoted at length in E. Borel,

Lecons sur la theorie des fonctions, 1928.

9



MOTIVATION and GOAL

INSIGHT – demands speed ≡ parallelism

• For rapid verification.

• For validation; proofs and refutations.

• For “monster barring”.

† What is “easy” changes while HPC and HPN
blur; merging disciplines and collaborators.

• Parallelism ≡ more space, speed & stuff.

• Exact ≡ hybrid ≡ symbolic ‘+’ numeric
(MapleVI meets NAG).

• For analysis, algebra, geometry & topol-
ogy.
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COMMENTS

• Towards an Experimental Mathodology —

philosophy and practice.

• Intuition is acquired — mesh computation

and mathematics.

• Visualization — three is a lot of dimen-

sions.

• “Caging” and “Monster-barring” (Lakatos).

– graphic checks: compare

2
√

y − y and
√

y ln(y), 0 < y < 1

– randomized checks: equations, linear al-

gebra, primality
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PART of OUR ‘METHODOLOGY’

1. (High Precision) computation of object(s).

2. Pattern Recognition of Real Numbers (In-
verse Calculator and ’RevEng’)∗, or Se-
quences ( Salvy & Zimmermann’s ‘gfun’,
Sloane and Plouffe’s Encyclopedia).

3. Extensive use of ‘Integer Relation Meth-
ods’: PSLQ & LLL and FFT.†

• Exclusion bounds are especially useful.

• Great test bed for “Experimental Math”.

4. Some automated theorem proving (Wilf-
Zeilberger etc).

∗ISC space limits: from 10Mb in 1985 to 10Gb today.
†Top Ten “Algorithm’s for the Ages,” Random Sam-
ples, Science, Feb. 4, 2000.
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FOUR EXPERIMENTS

• 1. Kantian example: generating “the

classical non-Euclidean geometries (hyperbolic,

elliptic) by replacing Euclid’s axiom of parallels

(or something equivalent to it) with alternative

forms.”

• 2. The Baconian experiment is a contrived

as opposed to a natural happening, it “is the

consequence of ‘trying things out’ or even of

merely messing about.”

• 3. Aristotelian demonstrations: “apply elec-

trodes to a frog’s sciatic nerve, and lo, the leg

kicks; always precede the presentation of the

dog’s dinner with the ringing of a bell, and lo,

the bell alone will soon make the dog dribble.”
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• 4. The most important is Galilean: “a crit-

ical experiment – one that discriminates be-

tween possibilities and, in doing so, either gives

us confidence in the view we are taking or

makes us think it in need of correction.”

¦ It is also the only one of the four forms which

will make Experimental Mathematics a serious

enterprise.

• From Peter Medawar’s Advice to a Young

Scientist, Harper (1979).
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MILNOR

“If I can give an abstract proof of something,
I’m reasonably happy. But if I can get a con-
crete, computational proof and actually pro-
duce numbers I’m much happier. I’m rather
an addict of doing things on the computer,
because that gives you an explicit criterion of
what’s going on. I have a visual way of think-
ing, and I’m happy if I can see a picture of
what I’m working with.”

· · ·

• Consider the following images of zeroes of
0/1 polynomials
www.cecm.sfu.ca/MRG/INTERFACES.html

¦ But symbols are often more reliable than pic-
tures.

On to the examples . . .
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I: GENERAL EXAMPLES

1. TWO INTEGRALS

• A. π 6= 22
7 .

∫ 1

0

(1− x)4x4

1 + x2
dx =

22

7
− π.

[
∫ t

0
· = 1

7
t7 − 2

3
t6 + t5 − 4

3
t3 + 4 t− 4 arctan (t) .]

· · ·

• B. The sophomore’s dream.

∫ 1

0

1

xx
dx =

∞∑

n=1

1

nn
.
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2. TWO INFINITE PRODUCTS

• A. a rational evaluation:

∞∏

n=2

n3 − 1

n3 + 1
=

2

3

· · ·

• B. and a transcendent one:

∞∏

n=2

n2 − 1

n2 + 1
=

π

sinh(π)
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3. HIGH PRECISION FRAUD

∞∑

n=1

[n tanh(π)]

10n

?
=

1

81

is valid to 268 places; while
∞∑

n=1

[n tanh(π
2)]

10n

?
=

1

81

is valid to just 12 places.

• Both are actually transcendental numbers.

Correspondingly the simple continued fractions
for tanh(π) and tanh(π

2) are respectively

[0,1, 267,4,14,1,2,1,2,2,1,2,3,8,3,1]

and

[0,1, 11,14,4,1,1,1,3,1,295,4,4,1,5,17,7]

• Bill Gosper describes how continued frac-
tions let you “see” what a number is. “[I]t’s
completely astounding ... it looks like you
are cheating God somehow.”
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4. PARTIAL FRACTIONS & CONVEXITY

• We consider a network objective function pN

given by

pN(~q) =
∑

σ∈SN

(
N∏

i=1

qσ(i)∑N
j=i qσ(j)

)(
N∑

i=1

1
∑N

j=i qσ(j)
)

summed over all N ! permutations; so a typical
term is

(
N∏

i=1

qi∑N
j=i qj

)(
N∑

i=1

1
∑n

j=i qj
) .

¦ For N = 3 this is

q1q2q3(
1

q1 + q2 + q3
)(

1

q2 + q3
)(

1

q3
)

×(
1

q1 + q2 + q3
+

1

q2 + q3
+

1

q3
) .

• We wish to show pN is convex on the pos-
itive orthant. First we try to simplify the
expression for pN .
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• The partial fraction decomposition gives:

p1(x1) =
1

x1
,

p2(x1, x2) =
1

x1
+

1

x2
− 1

x1 + x2
,

p3(x1, x2, x3) =
1

x1
+

1

x2
+

1

x3

− 1

x1 + x2
− 1

x2 + x3
− 1

x1 + x3

+
1

x1 + x2 + x3
.

So we predict the ‘same’ for N = 4 and we:

CONJECTURE. For each N ∈ N

pN(x1, . . . , xN) :=
∫ 1

0


1−

N∏

i=1

(1− txi)


 dt

t

is convex, indeed 1/concave.
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• One may prove this for N < 6 via a large

symbolic Hessian – and make many ‘ran-

dom’ numerical checks.

PROOF. A year later, interpreting the origi-

nal function as a joint expectation of Poisson

distributions gave:

pN(~x) =
∫

Rn
+

e−(y1+···+yn)max

(
y1

x1
, . . . ,

yn

xn

)
dy.

• See SIAM Electronic Problems and Solu-

tions. www.siam.org/journals/problems/
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5. CONVEX CONJUGATES and NMR

The Hoch and Stern information measure, or
neg-entropy, is defined in complex n−space by

H(z) =
n∑

j=1

h(zj/b),

where h is convex and given (for scaling b) by:

h(z) , |z| ln
(
|z|+

√
1 + |z|2

)
−

√
1 + |z|2

for quantum theoretic (NMR) reasons.

• Recall the Fenchel-Legendre conjugate

f∗(y) := sup
x
〈y, x〉 − f(x).

•Our symbolic convex analysis package (stored
at www.cecm.sfu.ca/projects/CCA/) produced:

h∗(z) = cosh(|z|)
¦ Compare the Shannon entropy:

(z ln z − z)∗ = exp(z).
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¦ I’d never have tried by hand!

• Efficient dual algorithms now may be con-

structed.

¦ Knowing ‘closed forms’ helps:

(exp exp)∗(y) = y ln(y)− y{W (y) + W (y)−1}
where Maple or Mathematica knows the com-

plex Lambert W function

W (x)eW (x) = x.

Thus, the conjugate’s series is

−1+(ln(y)− 1) y−1

2
y2+

1

3
y3−3

8
y4+

8

15
y5+O

(
y6

)
.

Coworkers: Marechal, Naugler, · · · , Bauschke,

Fee, Lucet
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6. SOME FOURIER INTEGRALS

Recall the sinc function

sinc(x) :=
sin(x)

x
.

Consider, the seven highly oscillatory integrals

below.∗

I1 :=
∫ ∞
0

sinc(x) dx =
π

2
,

I2 :=
∫ ∞
0

sinc(x)sinc
(

x

3

)
dx =

π

2
,

I3 :=
∫ ∞
0

sinc(x)sinc
(

x

3

)
sinc

(
x

5

)
dx =

π

2
,

· · ·

I6 :=
∫ ∞
0

sinc(x)sinc
(

x

3

)
· · · sinc

(
x

11

)
dx =

π

2
,

I7 :=
∫ ∞
0

sinc(x)sinc
(

x

3

)
· · · sinc

(
x

13

)
dx =

π

2
.

∗These are hard to compute accurately numerically.
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However,

I8 :=
∫ ∞
0

sinc(x)sinc
(

x

3

)
· · · sinc

(
x

15

)
dx

=
467807924713440738696537864469

935615849440640907310521750000
π

≈ 0.499999999992646π.

• When a researcher, using a well-known com-
puter algebra package, checked this he – and
the makers – concluded there was a “bug” in
the software. Not so!

¦ Our analysis, via Parseval’s theorem, links
the integral

IN :=
∫ ∞
0

sinc(a1x)sinc (a2x) · · · sinc (aNx) dx

with the volume of the polyhedron PN given
by

PN := {x : |
N∑

k=2

akxk| ≤ a1, |xk| ≤ 1,2 ≤ k ≤ N}.

where x := (x2, x3, · · · , xN).
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If we let

CN := {(x2, x3, · · · , xN) : −1 ≤ xk ≤ 1,2 ≤ k ≤ N},
then

IN =
π

2a1

V ol(PN)

V ol(CN)
.

• Thus, the value drops precisely when the
constraint

∑N
k=2 akxk ≤ a1 becomes active and

bites the hypercube CN . That occurs when

N∑

k=2

ak > a1.

In the above example, 1
3 + 1

5 + · · ·+ 1
13 < 1, but

on addition of the term 1
15, the sum exceeds 1,

the volume drops, and IN = π
2 no longer holds.

• A somewhat cautionary example for too
enthusiastically inferring patterns from seem-
ingly compelling symbolic or numerical com-
putation.

Coworkers: D. Borwein, Mares
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7. MINIMAL POLYNOMIALS

of COMBINATORIAL MATRICES

Consider matrices A, B, C, M :

Akj := (−1)k+1
(2n− j

2n− k

)
,

Bkj := (−1)k+1
(2n− j

k − 1

)
,

Ckj := (−1)k+1
(j − 1

k − 1

)

(k, j = 1, . . . , n) and

M := A + B − C.

• In earlier work on Euler Sums we needed to

prove M invertible: actually

M−1 =
M + I

2
.
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• The key is discovering

A2 = C2 = I(1)

B2 = CA, AC = B.

• It follows that B3 = BCA = AA = I, and
that the group generated by A,B and C is S3.

¦ Once discovered, the combinatorial proof of
this is routine – either for a human or a com-
puter (‘A = B‘, Wilf-Zeilberger).

• One now easily shows using (1)

M2 + M = 2I

as formal algebra since M = A + B − C.

• In truth I started in Maple with cases of

‘minpoly(M, x)‘

and then emboldened I typed

‘minpoly(B, x)‘ . . .
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• Random matrices have full degree minimal

polynomials.

• Jordan Forms uncover Spectral Abscissas.

Coworkers: D. Borwein, Girgensohn.
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8. PARTITIONS and PATTERNS

• The number of additive partitions of n, p(n),
is generated by

∏

n≥1

(1− qn)−1.

¦ Thus p(5) = 7 since

5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1

= 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1.

QUESTION. How hard is p(n) to compute –
in 1900 (for MacMahon), and 2000 (for Maple)?

· · ·
• Euler’s pentagonal number theorem is

∏

n≥1

(1− qn) =
∞∑

n=−∞
(−1)nq(3n+1)n/2.

¦ We can recognize the triangular numbers in
Sloane’s on-line ‘Encyclopedia of Integer Se-
quences’. And much more.
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9. ESTABLISHING INEQUALITIES

and the MAXIMUM PRINCIPLE

• Consider the two means

L−1(x, y) :=
x− y

ln(x)− ln(y)

and

M(x, y) :=
3
2

√√√√x
2
3 + y

2
3

2

• An elliptic integral estimate reduced to the

elementary inequalities

L(M(x,1),
√

x) < L(x,1) < L(M(x,1),1)

for 0 < x < 1.

¦ We first discuss a method of showing

E(x) := L(x,1)− L(M(x,1),
√

x) > 0

on 0 < x < 1.
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A. Numeric/symbolic methods

• limx→0+ E(x) = ∞.

• Newton-like iteration shows that E(x) > 0

on [0.0,0.9] .

• Taylor series shows E(x) has 4 zeroes at 1.

• Maximum Principle shows there are no more

zeroes inside C := {z : |z − 1| = 1
4}:

1

2πi

∫

C

E ′
E = #(E−1(0);C)

• When we make each step effective.
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B. Graphic/symbolic methods

Consider the ‘opposite’ (cruder) inequality

F(x) := L(M(x,1),1)− L(x,1) > 0

• Then we may observe that it holds since

– M is a mean; and

– L is decreasing.
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BERLINSKI

“The computer has in turn changed the very
nature of mathematical experience, suggest-
ing for the first time that mathematics, like
physics, may yet become an empirical disci-
pline, a place where things are discovered be-
cause they are seen.”

· · ·
“The body of mathematics to which the calcu-
lus gives rise embodies a certain swashbuckling
style of thinking, at once bold and dramatic,
given over to large intellectual gestures and in-
different, in large measure, to any very detailed
description of the world. It is a style that has
shaped the physical but not the biological sci-
ences, and its success in Newtonian mechan-
ics, general relativity and quantum mechanics
is among the miracles of mankind. But the
era in thought that the calculus made possible
is coming to an end. Everyone feels this is so
and everyone is right.”
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II. π and FRIENDS

A: (A quartic algorithm.) Set a0 = 6 − 4
√

2

and y0 =
√

2− 1. Iterate

yk+1 =
1− (1− y4

k)
1/4

1 + (1− y4
k)

1/4

ak+1 = ak(1 + yk+1)
4

− 22k+3yk+1(1 + yk+1 + y2
k+1)

Then ak converges quartically to 1/π.

• Used since 1986, with Salamin-Brent scheme,

by Bailey, Kanada (Tokyo).
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• In 1997, Kanada computed over 51 billion

digits on a Hitachi supercomputer (18 itera-

tions, 25 hrs on 210 cpu’s), and 236 digits in

April 1999.

In December 2002, Kanada computed π to

over 1.24 trillion decimal digits. His team

first computed π in hexadecimal (base 16) to

1,030,700,000,000 places, using the following

two arctangent relations:

π = 48 tan−1 1

49
+ 128 tan−1 1

57
− 20 tan−1 1

239

+48 tan−1 1

110443

π = 176 tan−1 1

57
+ 28 tan−1 1

239
− 48 tan−1 1

682

+96 tan−1 1

12943
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• Kanada verified the results of these two com-

putations agreed, and then converted the hex

digit sequence to decimal and back.

¦ A billion (230) digit computation has been

performed on a single Pentium II PC in under

9 days.

¦ 50 billionth decimal digit of π or 1
π is 042 !

And after 17 billion digits 0123456789 has fi-

nally appeared (Brouwer’s famous intuitionist

example now converges!).

Details at: www.cecm.sfu.ca/personal/jborwein/

pi cover.html.
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B: (A nonic (ninth-order) algorithm.) In 1995

Garvan and I found genuine η-based m-th order

approximations to π.

¦ Set

a0 = 1/3, r0 = (
√

3− 1)/2, s0 = 3
√

1− r30

and iterate

t = 1 + 2rk u = [9rk(1 + rk + r2k)]
1/3

v = t2 + tu + u2 m =
27(1 + sk + s2k)

v

sk+1 =
(1− rk)

3

(t + 2u)v
rk+1 = (1− s3k)

1/3

and

ak+1 = mak + 32k−1(1−m)

Then 1/ak converges nonically to π.
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• Their discovery and proof both used enor-

mous amounts of computer algebra (e.g., hunt-

ing for ‘
∑ ⇒ ∏

’ and ’the modular machine’)

† Higher order schemes are slower than quartic.

• Kanada’s estimate of time to run the same

FFT/Karatsuba-based π algorithm on a serial

machine: “infinite”.

Coworkers: Bailey, P. Borwein, Garvan, Kanada,

Lisoněk
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C: (‘Pentium farming’ for binary digits.) Bai-

ley, P. Borwein and Plouffe (1996) discovered

a series for π (and some other polylogarithmic

constants) which allows one to compute hex–

digits of π without computing prior digits.

• The algorithm needs very little memory and

does not need multiple precision. The running

time grows only slightly faster than linearly in

the order of the digit being computed.

• The key, found by ’PSLQ’ (below) is:

π =
∞∑

k=0

(
1

16

)k ( 4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)

• Knowing an algorithm would follow they spent

several months hunting for such a formula.

¦ Once found, easy to prove in Mathematica,

Maple or by hand.
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¦ A most successful case of

REVERSE

MATHEMATICAL

ENGINEERING

• (Sept 97) Fabrice Bellard (INRIA) used a

variant formula to compute 152 binary digits

of π, starting at the trillionth position (1012).

This took 12 days on 20 work-stations working

in parallel over the Internet.

• (August 98) Colin Percival (SFU, age 17) fin-

ished a similar ‘embarassingly parallel’ compu-

tation of five trillionth bit (using 25 machines

at about 10 times the speed). In Hex:

07E45733CC790B5B5979

The binary digits of π starting at the 40 tril-

lionth place are

00000111110011111.
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• (September 00) The quadrillionth bit is ‘0’
(used 250 cpu years on 1734 machines in 56
countries). From the 999,999,999,999,997th
bit of π one has:

111000110001000010110101100000110

¦ One of the largest computations ever!

• Bailey and Crandall (2001) make a reason-
able, hence very hard conjecture, about the
uniform distribution of a related chaotic
dynamical system. This conjecture implies:

Existence of a ‘BBP’ formula in base b for an
irrational α ensures the normality base b of α.

For log2 the dynamical system is

xn+1 ≡ 2(xn +
1

n
) mod 1,

www.sciencenews.org/20010901/bob9.asp.

• In any given base, arctan(p
q) has a BBP for-

mula for a dense set of rationals.
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D: (Other polylogarithms.) Catalan’s constant

G :=
∞∑

k=0

(−1)k

(2k + 1)2

is not proven irrational.

• In a series of inspired computations using

polylogarithmic ladders Broadhurst has since

found – and proved – similar identities for con-

stants such as ζ(3), ζ(5) and G. Broadhurst’s

binary formula is

G = 3
∞∑

k=0

1

2 · 16k

{
1

(8k + 1)2
− 1

(8k + 2)2

+
1

2(8k + 3)2
− 1

22(8k + 5)2

+
1

22(8k + 6)2
− 1

23(8k + 7)2

}

+
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−2
∞∑

k=0

1

8 · 163k

{
1

(8k + 1)2
+

1

2(8k + 2)2

+
1

23(8k + 3)2
− 1

26(8k + 5)2

− 1

27(8k + 6)2
− 1

29(8k + 7)2

}

• Why was G missed earlier?

• He also gives some constants with ternary

expansions.

Coworkers: BBP, Bellard, Broadhurst, Perci-

val, the Web, · · ·
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A MISLEADING PICTURE
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III. NUMBER THEORY

1. NORMAL FAMILIES

† High–level languages or computational speed?

• A family of primes P is normal if it contains
no primes p, q such that p divides q − 1.

A: Three Conjectures:

¦ Giuga’s conjecture (’51) is that

n−1∑

k=1

kn−1 ≡ n− 1 (mod n)

if and only if n is prime.

• Agoh’s Conjecture (’95) is equivalent:

nBn−1 ≡ −1 (mod n)

if and only if n is prime; here Bn is a Bernoulli
number.
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¦ Lehmer’s conjecture (’32) is that

φ(n) | n− 1

if and only if n is prime.

“A problem as hard as existence of odd
perfect numbers.”

· · ·

• For these conjectures the set of prime factors
of any counterexample n is a normal family.

¦ We exploited this property aggressively in our
(Pari/Maple) computations

• Lehmer’s conjecture had been variously ver-
ified for up to 13 prime factors of n. We ex-
tended and unified this for 14 or fewer prime
factors.
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¦ We also examined the related condition

φ(n) | n + 1

known to have 8 solutions with up to 6 prime

factors (Lehmer) : 2, F0, · · · , F4 (the Fermat

primes and a rogue pair: 4919055 and

6992962672132095.

• We extended this to 7 prime factors – by dint

of a heap of factorizations!

• But the next Lehmer cases (15 and 8) were

way too large. The curse of exponentiality!
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B. Counterexamples to the Giuga conjecture
must be Carmichael numbers∗

(p− 1) | (n

p
− 1)

and odd Giuga numbers: n square-free and

∑

p|n

1

p
−

∏

p|n

1

p
∈ Z

when p | n and p prime. An even example is

1

2
+

1

3
+

1

5
− 1

30
= 1.

¦ RHS must be ’1’ for N < 30. With 8 primes:

554079914617070801288578559178

= 2× 3× 11× 233̇1× 47059

×2259696349× 110725121051.

† The largest Giuga number we know has 97
digits with 10 primes (one has 35 digits).
∗Only recently proven an infinite set!
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† Guiga numbers were found by relaxing to a

combinatorial problem. We recursively gener-

ated relative primes forming Giuga sequences

such as

1

2
+

1

3
+

1

7
+

1

83
+

1

5× 17
− 1

296310
= 1

• We tried to ‘use up’ the only known branch

and bound algorithm for Giuga’s Conjecture:

30 lines of Maple became 2 months in C++

which crashed in Tokyo; but confirmed our lo-

cal computation that a counterexample n has

more than 13,800 digits.

Coworkers: D. Borwein, P. Borwein, Girgen-

sohn, Wong and Wayne State Undergraduates
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2. DISJOINT GENERA

Theorem 1 There are at most 19 integers not

of the form of xy + yz + xz with x, y, z ≥ 1.

The only non-square-free are 4 and 18. The

first 16 square-free are

1,2,6,10,22,30,42,58,70,78,102

130,190, 210,330,462.

which correspond to “discriminants with one

quadratic form per genus”.

• If the 19th exists, it is greater than 1011

which the Generalized Riemann Hypothesis (GRH)

excludes.

• The Matlab road to proof & the hazards of

Sloane’s Encyclopedia.

Coworker: Choi
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KUHN

“The issue of paradigm choice can never be

unequivocally settled by logic and experiment

alone.

· · ·
in these matters neither proof nor error is at is-

sue. The transfer of allegiance from paradigm

to paradigm is a conversion experience that

cannot be forced.”
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HERSH

•Whatever the outcome of these developments,

mathematics is and will remain a uniquely hu-

man undertaking. Indeed Reuben Hersh’s ar-

guments for a humanist philosophy of math-

ematics, as paraphrased below, become more

convincing in our setting:

1. Mathematics is human. It is part of

and fits into human culture. It does not

match Frege’s concept of an abstract,

timeless, tenseless, objective reality.

2. Mathematical knowledge is fallible.

As in science, mathematics can advance

by making mistakes and then correct-

ing or even re-correcting them. The

“fallibilism” of mathematics is brilliantly

argued in Lakatos’ Proofs and Refuta-

tions.
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3. There are different versions of proof

or rigor. Standards of rigor can vary

depending on time, place, and other

things. The use of computers in formal

proofs, exemplified by the computer-

assisted proof of the four color theo-

rem in 1977, is just one example of

an emerging nontraditional standard of

rigor.

4. Empirical evidence, numerical ex-

perimentation and probabilistic proof all

can help us decide what to believe in

mathematics. Aristotelian logic isn’t

necessarily always the best way of de-

ciding.
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5. Mathematical objects are a special
variety of a social-cultural-historical ob-
ject. Contrary to the assertions of cer-
tain post-modern detractors, mathemat-
ics cannot be dismissed as merely a
new form of literature or religion. Nev-
ertheless, many mathematical objects
can be seen as shared ideas, like Moby
Dick in literature, or the Immaculate
Conception in religion.

¦ From “Fresh Breezes in the Philosophy of
Mathematics”, American Mathematical Monthly,
August-Sept 1995, 589–594.

• The recognition that “quasi-intuitive” analo-
gies may be used to gain insight in mathemat-
ics can assist in the learning of mathematics.
And honest mathematicians will acknowledge
their role in discovery as well.

We should look forward to what the future will
bring.
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A FEW CONCLUSIONS

• Draw your own! – perhaps · · ·

• Proofs are often out of reach – understand-

ing, even certainty, is not.

• Packages can make concepts accessible (Groeb-

ner bases).

• Progress is made ‘one funeral at a time’

(Niels Bohr).

• ’You can’t go home again’ (Thomas Wolfe).

***
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Part I—Mathematics by Experiment:

Plausible Reasoning in the 21st Century

Part II—Experimentation in Mathematics:

Computational Paths to Discovery

Jonathan M. Borwein

Canada Research Chair & Founding Director

C E C M

Centre for Experimental &
Constructive Mathematics

Simon Fraser University, Burnaby, BC Canada

www.cecm.sfu.ca/~ jborwein/talks.html

Revised: June 1, 2003
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HILBERT

“Moreover a mathematical problem should

be difficult in order to entice us, yet not

completely inaccessible, lest it mock our

efforts. It should be to us a guidepost

on the mazy path to hidden truths, and

ultimately a reminder of our pleasure in

the successful solution.

· · ·

Besides it is an error to believe that

rigor in the proof is the enemy of sim-

plicity.” (David Hilbert)

• In his ‘23’ “Mathematische Probleme” lec-

ture to the Paris International Congress,

1900 (see Yandell’s, fine account in The

Honors Class, A.K. Peters, 2002).
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IV. ANALYSIS

1. LOG-CONCAVITY

Consider the unsolved Problem 10738 in the
1999 American Mathematical Monthly:

Problem: For t > 0 let

mn(t) =
∞∑

k=0

kn exp(−t)
tk

k!

be the nth moment of a Poisson distribution
with parameter t. Let cn(t) = mn(t)/n! . Show

a) {mn(t)}∞n=0 is log-convex∗ for all t > 0.

b) {cn(t)}∞n=0 is not log-concave for t < 1.

c∗) {cn(t)}∞n=0 is log-concave for t ≥ 1.

∗A sequence {an} is log-convex if an+1an−1 ≥ a2
n, for

n ≥ 1 and log-concave when the sign is reversed.
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Solution. (a) Neglecting the factor of exp(−t)

as we may, this reduces to

∑

k,j≥0

(jk)n+1tk+j

k!j!
≤

∑

k,j≥0

(jk)ntk+j

k! j!
k2 =

∑

k,j≥0

(jk)ntk+j

k!j!

k2 + j2

2
,

and this now follows from 2jk ≤ k2 + j2.

(b) As

mn+1(t) = t
∞∑

k=0

(k + 1)n exp(−t)
tk

k!
,

on applying the binomial theorem to (k + 1)n,

we see that mn(t) satisfies the recurrence

mn+1(t) = t
n∑

k=0

(n
k

)
mk(t), m0(t) = 1.

In particular for t = 1, we obtain the sequence

1,1,2,4,9,21,51,127,323,835,2188 . . . .
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• These are the Bell numbers as was discov-
ered by consulting Sloane’s Encyclopedia.
www.research.att.com/~ njas/sequences/index.html

• Sloane can also tell us that, for t = 2,
we have the generalized Bell numbers, and
gives the exponential generating functions.∗

Inter alia, an explicit computation shows that

t
1 + t

2
= c0(t) c2(t) ≤ c1(t)

2 = t2

exactly if t ≥ 1, which completes (b).

Also, preparatory to the next part, a simple
calculation shows that

∑

n≥0

cnun = exp (t(eu − 1)) .(2)

∗The Bell numbers were known earlier to Ramanujan –
Stigler’s Law!
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(c∗)∗ We appeal to a recent theorem due to E.

Rodney Canfield,† which proves the lovely and

quite difficult result below.

Theorem 2 If a sequence 1, b1, b2, · · · is non-

negative and log-concave then so is the se-

quence 1, c1, c2, · · · determined by the generat-

ing function equation

∑

n≥0

cnun = exp


 ∑

j≥1

bj
uj

j


 .

Using equation (2) above, we apply this to the

sequence bj = t/(j− 1)! which is log-concave

exactly for t ≥ 1. QED

∗The ‘*’ indicates this was the unsolved component.
†A search in 2001 on MathSciNet for “Bell numbers”
since 1995 turned up 18 items. This paper showed up
as number 10. Later, Google found it immediately!
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• It transpired that the given solution to (c)

was the only one received by the Monthly.

This is quite unusual.

• The reason might well be that it relied on

the following sequence of steps:

(??) ⇒ Computer Algebra System ⇒ Interface

⇒ Search Engine ⇒ Digital Library

⇒ Hard New Paper ⇒ Answer

• Now if only we could automate this!
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2. KHINTCHINE’S CONSTANT

† In different contexts different algorithms star.

A: The celebrated Khintchine constants K0,
(K−1) — the limiting geometric (harmonic)
mean of the elements of almost all simple con-
tinued fractions — have efficient reworkings as
Riemann zeta series.

¦ Standard definitions are cumbersome prod-
ucts. K0 = 2.6854520010653064453 . . .

• The rational ζ series we used was:

log(K0) ln(2)

=
∞∑

n=1

ζ(2n)− 1

n
(1− 1

2
+

1

3
− ... +

1

2n− 1
).

Here

ζ(s) :=
∞∑

n=1

1

ns
.
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• When accelerated and used with “recycling”

evaluations of {ζ(2s)}, this allowed us to

compute K0 to thousands of digits.

• Computation to 7,350 digits suggests that

K0’s continued fraction obeys its own pre-

diction.

• A related challenge is to find natural con-

stants that provably behave ‘normally’ – in

analogy to the Champernowne number

.0123456789101112 · · ·
which is provably normally distributed base

ten.
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B. Computing ζ(N)

¦ ζ(2N) ∼= B2N can be effectively computed

in parallel by

• multi-section methods - these have space

advantages even as serial algorithms and

work for poly-exp functions (Kevin Hare);

• FFT–enhanced symbolic Newton (recycling)

methods on the series sinh
cosh.

¦ ζ(2N + 1). The harmonic constant K−1 needs

odd ζ-values.

• We chose to use identities of Ramanujan et

al . . .
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3. A TASTE of RAMANUJAN

• For M ≡ −1 (mod 4)

ζ(4N + 3) = −2
∑

k≥1

1

k4N+3
(
e2πk − 1

)

+
2

π

{
4N + 7

4
ζ(4N+4)−

N∑

k=1

ζ(4k)ζ(4N+4−4k)

}

where the interesting term is the hyperbolic

trig series.

• Correspondingly, for M ≡ 1 (mod 4)

ζ(4N + 1) = − 2

N

∑

k≥1

(πk + N)e2πk −N

k4N+1(e2πk − 1)2

+
1

2Nπ

{
(2N+1)ζ(4N+2)+

∑2N
k=1(−1)k2kζ(2k)ζ(4N+2−2k)

}
.
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• Only a finite set of ζ(2N) values is required

and the full precision value eπ is reused

throughout.

¦ The number eπ is the easiest transcenden-

tal to fast compute (by elliptic methods).

One “differentiates” e−sπ to obtain π (the

AGM).

• For ζ(4N + 1) I decoded “nicer” series from

a few PSLQ cases of Plouffe. My result is

equivalent to:

{
2− (−4)−N

} ∞∑

k=1

coth(kπ)

k4N+1

− (−4)−2N
∞∑

k=1

tanh(kπ)

k4N+1

= QN × π4N+1.(3)
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The quantity QN in (3) is an explicit rational:

QN : =
2N+1∑

k=0

B4N+2−2kB2k

(4N + 2− 2k)!(2k)!

×
{
(−1)(

k
2) (−4)N2k + (−4)k

}
.

• On substituting

tanh(x) = 1− 2

exp(2x) + 1

and

coth(x) = 1 +
2

exp(2x)− 1

one may solve for

ζ(4N + 1).
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• Thus,

ζ(5) =
1

294
π5 +

2

35

∞∑

k=1

1

(1 + e2kπ)k5

+
72

35

∞∑

k=1

1

(1− e2kπ)k5
.

• Will we ever be able to identify universal

formulae like (4) automatically? My solu-

tion was highly human assisted.

Coworkers: Bailey, Crandall, Hare, Plouffe.
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V: INTEGER RELATION EXAMPLES

1. The USES of LLL and PSLQ

• A vector (x1, x2, · · · , xn) of reals possesses an
integer relation if there are integers ai not all
zero with

0 = a1x1 + a2x2 + · · ·+ anxn.

PROBLEM: Find ai if such exist. If not, ob-
tain lower bounds on the size of possible ai.

• (n = 2) Euclid’s algorithm gives solution.

• (n ≥ 3) Euler, Jacobi, Poincare, Minkowski,
Perron, others sought method.

• First general algorithm in 1977 by Fergu-
son & Forcade. Since ’77: LLL (in Maple),
HJLS, PSOS, PSLQ (’91, parallel ’99).
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• Integer Relation Detection was recently ranked
among “the 10 algorithms with the greatest
influence on the development and practice of
science and engineering in the 20th century.”
J. Dongarra, F. Sullivan, Computing in Science
& Engineering 2 (2000), 22–23.

Also: Monte Carlo, Simplex, Krylov Subspace,
QR Decomposition, Quicksort, ..., FFT, Fast
Multipole Method.

A. ALGEBRAIC NUMBERS

Compute α to sufficiently high precision (O(n2))
and apply LLL to the vector

(1, α, α2, · · · , αn−1).

• Solution integers ai are coefficients of a
polynomial likely satisfied by α.

• If no relation is found, exclusion bounds are
obtained.
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B. FINALIZING FORMULAE

¦ If we suspect an identity PSLQ is powerful.

• (Machin’s Formula) We try lin dep on

[arctan(1),arctan(
1

5
),arctan(

1

239
)]

and recover [1, -4, 1]. That is,

π

4
= 4arctan(

1

5
)− arctan(

1

239
).

[Used on all serious computations of π from
1706 (100 digits) to 1973 (1 million).]

• (Dase’s ‘mental‘ Formula) We try lin dep

on

[arctan(1), arctan(
1

2
), arctan(

1

5
),arctan(

1

8
)]

and recover [-1, 1, 1, 1]. That is,

π

4
= arctan(

1

2
) + arctan(

1

5
) + arctan(

1

8
).

[Used by Dase for 200 digits in 1844.]
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C. ZETA FUNCTIONS

• The zeta function is defined, for s > 1, by

ζ(s) =
∞∑

n=1

1

ns
.

• Thanks to Apéry (1976) it is well known that

S2 := ζ(2) = 3
∞∑

k=1

1

k2
(
2k
k

)

A3 := ζ(3) =
5

2

∞∑

k=1

(−1)k−1

k3
(
2k
k

)

S4 := ζ(4) =
36

17

∞∑

k=1

1

k4
(
2k
k

)

¦ These results might suggest that

Z5 := ζ(5)/
∞∑

k=1

(−1)k−1

k5
(
2k
k

)

is a simple rational or algebraic number.
PSLQ RESULT: If Z5 satisfies a polynomial
of degree ≤ 25 the Euclidean norm of coeffi-
cients exceeds 2× 1037.
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2. BINOMIAL SUMS and LIN DEP

• Any relatively prime integers p and q such

that

ζ(5)
?
=

p

q

∞∑

k=1

(−1)k+1

k5
(
2k
k

)

have q astronomically large (as “lattice basis

reduction” showed).

• But · · · PSLQ yields in polylogarithms:

A5 =
∞∑

k=1

(−1)k+1

k5
(
2k
k

) = 2ζ(5)

− 4
3L5 + 8

3L3ζ(2) + 4L2ζ(3)

+ 80
∑

n>0

(
1

(2n)5
− L

(2n)4

)
ρ2n

where L := log(ρ) and ρ := (
√

5 − 1)/2; with

similar formulae for A4, A6, S5, S6 and S7.
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• A less known formula for ζ(5) due to Koecher

suggested generalizations for ζ(7), ζ(9), ζ(11) . . ..

¦ Again the coefficients were found by integer

relation algorithms. Bootstrapping the earlier

pattern kept the search space of manageable

size.

• For example, and simpler than Koecher:

ζ(7) =
5

2

∞∑

k=1

(−1)k+1

k7
(
2k
k

)(4)

+
25

2

∞∑

k=1

(−1)k+1

k3
(
2k
k

)
k−1∑

j=1

1

j4

•We were able – by finding integer relations for

n = 1,2, . . . ,10 – to encapsulate the formulae

for ζ(4n+3) in a single conjectured generating

function, (entirely ex machina):
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Theorem 3 For any complex z,

∞∑

n=0

ζ(4n + 3)z4n

=
∞∑

k=1

1

k3(1− z4/k4)
(5)

=
5

2

∞∑

k=1

(−1)k−1

k3
(
2k
k

)
(1− z4/k4)

k−1∏

m=1

1 + 4z4/m4

1− z4/m4
.

¦ The first ‘=‘ is easy. The second is quite

unexpected in its form!

• z = 0 yields Apéry’s formula for ζ(3) and the

coefficient of z4 is (4).
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HOW IT WAS FOUND

¦ The first ten cases show (5) has the form

5

2

∑

k≥1

(−1)k−1

k3
(
2k
k

) Pk(z)

(1− z4/k4)

for undetermined Pk; with abundant data to

compute

Pk(z) =
k−1∏

m=1

1 + 4z4/m4

1− z4/m4
.

• We found many reformulations of (5), in-

cluding a marvellous finite sum:

n∑

k=1

2n2

k2

∏n−1
i=1(4k4 + i4)

∏n
i=1, i 6=k(k

4 − i4)
=

(2n

n

)
.(6)

¦ Obtained via Gosper’s (Wilf-Zeilberger type)

telescoping algorithm after a mistake in an elec-

tronic Petrie dish (‘infty’ 6= ‘infinity’).
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This identity was subsequently proved by Almkvist

and Granville (Experimental Math, 1999) thus

finishing the proof of (5) and giving a rapidly

converging series for any ζ(4N + 3) where N

is positive integer.

¦ Perhaps shedding light on the irrationality

of ζ(7)?

Recall that ζ(2N + 1) is not proven irra-

tional for N > 1. One of ζ(2n + 3) for

n = 1,2,3,4 is irrational (Rivoal et al).

† Paul Erdos, when shown (6) shortly before

his death, rushed off.

Twenty minutes later he returned saying he

did not know how to prove it but if proven

it would have implications for Apéry’s re-

sult (‘ζ(3) is irrational’).
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3. MULTIPLE ZETA VALUES & LIN DEP

• Euler sums or MZVs (“multiple zeta values”)

are a wonderful generalization of the classical

ζ function.

• For natural numbers i1, i2, . . . , ik

ζ(i1, i2, . . . , ik) :=
∑

n1>n2>ṅk>0

1

n
i1
1 n

i2
2 · · ·n

ik
k

(7)

¦ Thus ζ(a) =
∑

n≥1 n−a is as before and

ζ(a, b) =
∞∑

n=1

1 + 1
2b + ·+ 1

(n−1)b

na
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• The integer k is the sum’s depth and

i1 + i2 + · · ·+ ik is its weight.

• Definition (7) clearly extends to alternat-

ing and character sums. MZVs have re-

cently found interesting interpretations in

high energy physics, knot theory, combina-

torics . . .

•MZVs satisfy many striking identities, of which

ζ(2,1) = ζ(3)

4ζ(3,1) = ζ(4)

are the simplest.

¦ Euler himself found and partially proved

theorems on reducibility of depth 2 to depth 1

ζ’s [ζ(6,2) is the lowest weight ‘irreducible].
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¦ High precision fast ζ-convolution (EZFace/Java)

allows use of integer relation methods and

leads to important dimensional (reducibil-

ity) conjectures and amazing identities.

For r ≥ 1 and n1, . . . , nr ≥ 1, consider:

L(n1, . . . , nr;x) :=
∑

0<mr<...<m1

xm1

m
n1
1 . . . mnr

r
.

Thus

L(n;x) =
x

1n
+

x2

2n
+

x3

3n
+ · · ·

is the classical polylogarithm, while

L(n, m;x) =
1

1m

x2

2n
+ (

1

1m
+

1

2m
)

x3

3n
+ (

1

1m
+

1

2m
+

1

3m
)

x4

4n

+ · · · ,

L(n, m, l;x) =
1

1l

1

2m

x3

3n
+ (

1

1l

1

2m
+

1

1l

1

3m
+

1

2l

1

3m
)

x4

4n
+ · · · .
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• Series converge absolutely for |x| < 1 (con-

ditionally on |x| = 1 unless n1 = x = 1).

These polylogarithms

L(nr, . . . , n1;x) =
∑

0<m1<...<mr

xmr

mnr
r . . . m

n1
1

,

are determined uniquely by the differential equa-

tions

d

dx
L(nr, . . . , n1;x) =

1

x
L(nr − 1, . . . , n2, n1;x)

if nr ≥ 2 and

d

dx
L(nr, . . . , n2, n1;x) =

1

1− x
L(nr−1, . . . , n1;x)

if nr = 1 with the initial conditions

L(nr, . . . , n1; 0) = 0

for r ≥ 1 and

L(∅;x) ≡ 1.
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Set s := (s1, s2, . . . , sN). Let {s}n denotes con-

catenation, and w :=
∑

si. Then every periodic

polylogarithm leads to a function

Ls(x, t) :=
∑
n

L({s}n;x)twn

which solves an algebraic ordinary differential

equation in x, and leads to nice recurrences.

A. In the simplest case, with N = 1, the ODE

is DsF = tsF where

Ds :=
(
(1− x)

d

dx

)1 (
x

d

dx

)s−1

and the solution (by series) is a generalized

hypergeometric function:

Ls(x, t) = 1 +
∑

n≥1

xn ts

ns

n−1∏

k=1

(
1 +

ts

ks

)
,

as follows from considering Ds(xn).
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B. Similarly, for N = 1 and negative integers

L−s(x, t) := 1+
∑

n≥1

(−x)n ts

ns

n−1∏

k=1

(
1 + (−1)k ts

ks

)
,

and L−1(2x−1, t) solves a hypergeometric ODE.

Indeed

L−1(1, t) =
1

β(1 + t
2, 1

2 − t
2)

.

C. We may obtain ODEs for eventually peri-

odic Euler sums. Thus, L−2,1(x, t) is a solution

of

t6 F = x2(x− 1)2(x + 1)2 D6F

+ x(x− 1)(x + 1)(15x2 − 6x− 7)D5F

+ (x− 1)(65x3 + 14x2 − 41x− 8)D4F

+ (x− 1)(90x2 − 11x− 27)D3F

+ (x− 1)(31x− 10)D2F + (x− 1)DF.
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• This leads to a four-term recursion for F =∑
cn(t)xn with initial values c0 = 1, c1 =

0, c2 = t3/4, c3 = −t3/6, and the ODE can

be simplified.

We are now ready to prove Zagier’s conjec-

ture. Let F (a, b; c;x) denote the hypergeomet-

ric function. Then:

Theorem 4 (BBGL) For |x|, |t| < 1 and inte-

ger n ≥ 1

∞∑

n=0

L(3,1,3,1, . . . ,3,1︸ ︷︷ ︸
n−fold

;x) t4n

= F

(
t(1 + i)

2
,
−t(1 + i)

2
; 1;x

)
(8)

× F

(
t(1− i)

2
,
−t(1− i)

2
; 1;x

)
.
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Proof. Both sides of the putative identity start

1 +
t4

8
x2 +

t4

18
x3 +

t8 + 44t4

1536
x4 + · · ·

and are annihilated by the differential operator

D31 :=
(
(1− x)

d

dx

)2 (
x

d

dx

)2
− t4 .

QED

• Once discovered — and it was discovered

after much computational evidence — this

can be checked variously in Mathematica

or Maple (e.g., in the package gfun)!

Corollary 5 (Zagier Conjecture)

ζ(3,1,3,1, . . . ,3,1︸ ︷︷ ︸
n−fold

) =
2π4n

(4n + 2)!
(9)
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Proof. We have

F (a,−a; 1; 1) =
1

Γ(1− a)Γ(1 + a)
=

sinπa

πa

where the first equality comes from Gauss’s

evaluation of F (a, b; c; 1).

Hence, setting x = 1, in (8) produces

F

(
t(1 + i)

2
,
−t(1 + i)

2
; 1; 1

)
F

(
t(1− i)

2
,
−t(1− i)

2
; 1; 1

)

=
2

π2t2
sin

(
1 + i

2
πt

)
sin

(
1− i

2
πt

)

=
coshπt− cosπt

π2t2
=

∞∑

n=0

2π4nt4n

(4n + 2)!

on using the Taylor series of cos and cosh.

Comparing coefficients in (8) ends the proof.

QED

• What other deep Clausen-like hypergeomet-

ric factorizations lurk within?
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• If one suspects that (5) holds, once one
can compute these sums well, it is easy
to verify many cases numerically and be
entirely convinced.

• This is the unique non-commutative ana-
logue of Euler’s evaluation of ζ(2n).

A striking conjecture (open for n > 2) is:

8n ζ({−2,1}n) ?
= ζ({2,1}n),

or equivalently that the functions

L−2,1(1,2t) = L2,1(1, t) (= L3(1, t)),

agree for small t. There is abundant evidence
amassed since it was found in 1996.

• This is the only identification of its type of
an Euler sum with a distinct MZV . Can
just n = 2 be proven symbolically as is the
case for n = 1?
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DIMENSIONAL CONJECTURES

• To sum up, our simplest conjectures (on

the number of irreducibles) are still beyond

present proof techniques. Does ζ(5) or G ∈
Q? This may or may not be close to proof!

Thus, the field is wide open for numerical

exploration.

• Dimensional conjectures sometimes involve

finding integer relations between hundreds

of quantities and so demanding precision

of thousands of digits – often of hard to

compute objects.

• In that vein, Bailey and Broadhurst have

recently found a polylogarithmic ladder of

length 17 (a record) with such “ultra-PSLQing”.
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A conjectured generating function for the

dimension of a minimal generating set of the

(Q,+, ·)-algebra containing all Euler sums of

weight n and depth k, En,k.

∏

n≥3

∏

k≥1

(
1− xnyk

)En,k ?
= 1− x3y

(1− x2)(1− xy)

• Over 18 months of computation provided

the results in the next table and were very

convincing. As it was for a generating func-

tion which would prove more than:

Conjecture. (Drinfeld(1991)-Deligne)

The graded Lie algebra of Grothendieck

& Teichmuller has no more than one

generator in odd degrees, and no gen-

erators in even degrees.
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En,k k 1 2 3 4 5 6
n
3 1
4 1
5 1 1
6 1 1
7 1 2 1
8 2 2 1
9 1 3 3

10 2 5 3
11 1 5 7
12 3 8 9
13 1 7 14
14 3 14 20
15 1 9 25
16 4 20 42
17 1 12 42
18 4 30 75
19 1 15 66
20 5 40 132

Coworkers: B4, Fee, Girgensohn, Lisoněk, oth-

ers.
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4. MULTIPLE CLAUSEN VALUES

We also studied Deligne words for integrals

generating Multiple Clausen Values at π
3 like

µ(a, b) :=
∑

n>m>0

sin(nπ
3)

namb
,

and which seem quite fundamental.

• Thanks to a note from Flajolet, which led to

proof of results like S3 = 2π
3 µ(2)− 4

3ζ(3),

∞∑

k=1

1

k5
(
2k
k

) = 2πµ(4)− 19

3
ζ(5) +

2

3
ζ(2)ζ(3),

∞∑

k=1

1

k6
(
2k
k

) = −4π

3
µ(4,1) +

3341

1296
ζ(6)− 4

3
ζ(3)2.
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I finish with another sort of extension:

∞∑

n=1

1

n3
(
3n
n

)
2n

=
1

6
ln3 (2)− 33

16
ζ (3)

− 1

24
π2 ln (2) + π G.

Coworkers: Broadhurst & Kamnitzer

95



CARATHÉODORY

“I’ll be glad if I have succeeded in im-

pressing the idea that it is not only

pleasant to read at times the works of

the old mathematical authors, but this

may occasionally be of use for the ac-

tual advancement of science.”

• Constantin Carathéodory, speaking to an

MAA meeting in 1936.

96



GAUSS

• In Boris Stoicheff’s enthralling biography

of Gerhard Herzberg (1903-1999), who fled

Germany for Saskatchewan in 1935 and

won the 1971 Nobel Prize in Chemistry,

Gauss is recorded as writing:

“It is not knowledge, but the act of

learning, not possession but the act of

getting there which generates the great-

est satisfaction.”
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C3 COMPUTATIONAL INC

• Nationally shared — Internationally com-

petitive

The scope of the C3.ca is a seven year

plan to build computational infrastruc-

ture on a scale that is globally compet-

itive, and that supports globally com-

petitive research and development. The

plan will have a dramatic impact on

Canada’s ability to develop a knowl-

edge based economy. It will attract

highly skilled people to new jobs in key

application areas in the business, re-

search, health, education and telecom-

munications sectors. It will provide the

tools and opportunity to enhance their

knowledge and experience and retain

this resource within the country.
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• The Canadian government has funded/matched

$200 million worth of equipment in the last

three years.

• Ten major installations in Five Provinces.

• More to come: long-term commitment?

• Good human support at a distance/web

collaboration and visualization tools are key.

• A pretty large, and successful, investment

for a medium size country.

• A good model for other such countries?

• www.westgrid.ca and www.colab.sfu.ca are the

projects I am directly involved in.
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How not to experiment

Pooh Math:

‘Guess and Check’

while

Aiming Too High
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